Greedy expansions in convex optimization

نویسنده

  • V. N. Temlyakov
چکیده

This paper is a follow up to the previous author’s paper on convex optimization. In that paper we began the process of adjusting greedytype algorithms from nonlinear approximation for finding sparse solutions of convex optimization problems. We modified there three the most popular in nonlinear approximation in Banach spaces greedy algorithms – Weak Chebyshev Greedy Algorithm, Weak Greedy Algorithm with Free Relaxation and Weak Relaxed Greedy Algorithm – for solving convex optimization problems. We continue to study sparse approximate solutions to convex optimization problems. It is known that in many engineering applications researchers are interested in an approximate solution of an optimization problem as a linear combination of elements from a given system of elements. There is an increasing interest in building such sparse approximate solutions using different greedy-type algorithms. In this paper we concentrate on greedy algorithms that provide expansions, which means that the approximant at the mth iteration is equal to the sum of the approximant from the previous iteration ((m−1)th iteration) and one element from the dictionary with an appropriate coefficient. The problem of greedy expansions of elements of a Banach space is well studied in nonlinear approximation theory. At a first glance the setting of a problem of expansion of a given element and the setting of the problem of expansion in an optimization problem are very different. However, it turns out that the same technique can be used for solving both problems. We show how the technique developed in nonlinear approximation theory, in particular, the greedy expansions technique can be adjusted ∗University of South Carolina. Research was supported by NSF grant DMS-0906260

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Greedy Alternating Optimization for FHIM

This report investigates and examines the greedy alternating optimization procedures used for solving the non-convex optimization problem of our Factorized High order Interactions Model (FHIM) model.

متن کامل

Scaling Algorithms for M - convex Function Minimization

M-convex functions have various desirable properties as convexity in discrete optimization. We can find a global minimum of an M-convex function by a greedy algorithm, i.e., so-called descent algorithms work for the minimization. In this paper, we apply a scaling technique to a greedy algorithm and propose an efficient algorithm for the minimization of an M-convex function. Computational result...

متن کامل

Clustering on antimatroids and convex geometries

The clustering problem as a problem of set function optimization with constraints is considered. The behavior of quasi-concave functions on antimatroids and on convex geometries is investigated. The duality of these two set function optimizations is proved. The greedy type Chain algorithm, which allows to find an optimal cluster, both as the “most distant” group on antimatroids and as a dense c...

متن کامل

Greedy Strategies for Convex Optimization

We investigate two greedy strategies for finding an approximation to the minimum of a convex function E defined on a Hilbert space H. We prove convergence rates for these algorithms under suitable conditions on the objective function E. These conditions involve the behavior of the modulus of smoothness and the modulus of uniform convexity of E.

متن کامل

Dual Greedy Algorithm for Conic Optimization Problem

In the paper we propose an algorithm for nding approximate sparse solutions of convex optimization problem with conic constraints and examine convergence properties of the algorithm with application to the index tracking problem and unconstrained l1-penalized regression.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012